
JSMeter: Measuring JavaScript Behavior in the Wild

Paruj Ratanaworabhan
Cornell University

paruj@csl.cornell.edu

Benjamin Livshits
Microsoft Research

livshits@microsoft.com

David Simmons
Microsoft

dsim@microsoft.com

Benjamin Zorn
Microsoft Research
zorn@microsoft.com

1

MSR-TR-2010-8

2

Abstract

JavaScript is widely used in web-based applications
and is increasing popular with developers. So-called
browser wars in recent years have focused on Java-
Script performance, specifically claiming compara-
tive results based on benchmark suites such as Sun-
Spider and V8. In this paper we evaluate the behav-
ior of JavaScript web applications from commercial
web sites and compare this behavior with the bench-
marks.

We measure two specific areas of JavaScript run-
time behavior: 1) functions and code and 2) events
and handlers. We find that the benchmarks are not
representative of many real web sites and that con-
clusions reached from measuring the benchmarks
may be misleading. Specific common behaviors
of real web sites that are underemphasized in the
benchmarks include event-driven execution, instruc-
tion mix similarity, cold-code dominance, and the
prevalence of short functions. We hope our results
will convince the JavaScript community to develop
and adopt benchmarks that are more representative
of real web applications.

1 Introduction

JavaScript is a widely used programming language
that is enabling a new generation of computer appli-
cations. As the scripting language used to program
a large fraction of all web content, many important
web sites, including Google, Facebook, and Yahoo,
rely heavily on JavaScript to make the pages more
dynamic, interesting, and responsive. Because Java-
Script is so widely used to enable Web 2.0, the per-
formance of JavaScript is now a concern of vendors
of every major browser, including Mozilla Firefox,
Google Chrome, and Microsoft Internet Explorer.
The competition between major vendors, also known
as the ‘browser wars” [24], has inspired aggressive
new JavaScript implementations based on Just-In-
Time (JIT) compilation strategies [8].

Because browser market share is extremely im-
portant to companies competing in the web services
marketplace, an objective comparison of the per-
formance of different browsers is valuable to both
consumers and service providers. JavaScript bench-
marks, including SunSpider [23] and V8 [10], are

widely used to evaluate JavaScript performance (for
example, see [13]). These benchmark results are
used to market and promote browers, and the bench-
marks significantly influence the design of JavaScript
runtime implementations. As a result, performance
of JavaScript on the SunSpider and V8 benchmarks
has improved dramatically in recent years.

However, many people, including the benchmark
developers themselves, acknowledge that bench-
marks have limitations and do not necessarily rep-
resent real application behavior. This paper exam-
ines the following question: How representative are
the SunSpider and V8 benchmarks suites when com-
pared with the behavior of real Javascript-based web
applications? More importantly, we examine how
benchmark behavior that differs quite significantly
from real web applications might mislead JavaScript
runtime developers.

By instrumenting the Internet Explorer 8 Java-
Script runtime, we measure the JavaScript behav-
ior of 11 important web applications and pages, in-
cluding Gmail, Facebook, Amazon, and Yahoo. For
each application, we conduct a typical user inter-
action scenario that uses the web application for a
productive purpose such as reading email, ordering
a book, or finding travel directions. We measure a
variety of different program characteristics, ranging
from the mix of operations executed to the frequency
and types of events generated and handled.

Our results show that real web applications behave
very differently from the benchmarks and that there
are definite ways in which the benchmark behavior
might mislead a designer. Because of the space limi-
tations, this paper presents a relatively brief summary
of our findings. The interested reader is referred to a
companion technical report [18] for a more compre-
hensive set of results.

The contributions of this paper include:

• We are the first to publish a detailed charac-
terization of JavaScript execution behavior in
real web applications, the SunSpider, and the
V8 benchmarks. In this paper we focus on
functions and code as well as events and han-
dlers. Our technical report [18] considers heap-
allocated objects and data.

• We conclude that the benchmarks are not repre-
sentative of real applications in many ways. Fo-

3

cusing on benchmark performance may result in
overspecialization for benchmark behavior that
does not occur in practice, and in missing op-
timization opportunities that are present in the
real applications but not present in the bench-
marks.

• We find that real web applications have code
that is one to two orders of magnitude larger
than most of the benchmarks and that manag-
ing code (both allocating and translating) is an
important activity in a real JavaScript engine.
Our case study in Section 4.7 demonstrates this
point.

• We find that while the benchmarks are compute-
intensive and batch-oriented, real web applica-
tions are event-driven, handling thousands of
events. To be responsive, most event handlers
execute only tens to hundreds of bytecodes. As
a result, functions are typically short-lived, and
long-running loops are uncommon.

• While existing JavaScript benchmarks make
minimal use of event handlers, we find that they
are extensively used in real web applications.
The importance of responsiveness in web appli-
cation design is not captured adequately by any
of the benchmarks available today.

2 Background

JavaScript is a garbage-collected, memory-safe pro-
gramming language with a number of interesting
properties [6]. Contrary to what one might conclude
from their names, Java and JavaScript have many
differences. Unlike class-based object-oriented lan-
guages like C# and Java, JavaScript is a prototype-
based language, influenced heavily in its design by
Self [22]. JavaScript became widely used because
it is standardized, available in every browser imple-
mentation, and tightly coupled with the browser’s
Document Object Model [2].

Importance of JavaScript. JavaScript’s popular-
ity has grown with the success of the web. Scripts
in web pages have become increasingly complex
as AJAX (Asynchronous JavaScript and XML) pro-
gramming has transformed static web pages into re-
sponsive applications [11]. Web sites such as Ama-

zon, Gmail, and Facebook contain and execute sig-
nificant amounts of JavaScript code, as we document
in this paper. Web applications (or apps) are applica-
tions that are hosted entirely in a browser and deliv-
ered through the web. Web apps have the advantage
that they require no additional installation, will run
on any machine that has a browser, and provide ac-
cess to information stored in the cloud. Sophisticated
mobile phones, such as the iPhone, broaden the base
of Internet users, further increasing the importance
and reach of web apps.

In recent years, the complexity of web content has
spurred browser developers to increase browser per-
formance in a number of dimensions, including im-
proving JavaScript performance. Many of the tech-
niques for improving traditional object-oriented lan-
guages such as Java and C# can and have been ap-
plied to JavaScript [8, 9]. JIT compilation has also
been effectively applied, increasing measured bench-
mark performance of JavaScript dramatically.

Value of benchmarks. Because browser perfor-
mance can significantly affect a user’s experience
using a web application, there is commercial pres-
sure for browser vendors to demonstrate that they
have improved performance. As a result, JavaScript
benchmark results are widely used in marketing and
in evaluating new browser implementations. The two
most widely used JavaScript benchmark suites are
SunSpider, a collection of small benchmarks avail-
able from WebKit.org [23], and the V8 benchmarks,
a collection of seven slightly larger benchmarks pub-
lished by Google [10]. The benchmarks in both
of these suites are relatively small programs; for
example, the V8 benchmarks range from approxi-
mately 600 to 5,000 lines of code. While even the
benchmark developers themselves would admit that
these benchmarks do not represent real web applica-
tion behavior, the benchmarks are still used as a ba-
sis for tuning and comparing JavaScript implementa-
tions, and as a result have an important influence on
the effectiveness of those implementations in prac-
tice.

Illustrative example. Before we discuss how we
collect JavaScript behavior data from real sites and
benchmarks, we illustrate how this data is useful.
Figure 1 shows live heap graphs for visits to the

4

0 2 4 6 8 10 12 14

x 105

0

2

4

6

8

10

12
x 104

Logical time in allocated bytes

S
iz

e
of

 li
ve

 h
ea

p
(b

yt
es

)

function
string
array
object

(a) Live heap for google.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 106

0

2

4

6

8

10

12
x 105

Logical time in allocated bytes

S
iz

e
of

 li
ve

 h
ea

p
(b

yt
es

)

function
string
array
object

(b) Live heap for bing.

Figure 1: Live heap contents as a function of time for two search applications.

google and bing web sites1. These graphs show
the number of live bytes of different types of data in
the JavaScript heap as a function of time (measured
by bytes of data allocated). In the figures, we show
only the four most important data types: functions,
strings, arrays, and objects. When the JavaScript
heap is discarded, for example because the user nav-
igates to a new page, the live bytes drops to zero, as
we see in google.

These two search web sites shown offer very sim-
ilar functionality, and we performed the same se-
quence of operations on them during our visit: we
searched for “New York” in both cases and then pro-
ceeded to page through the results, first web page re-
sults and then the relevant news items.

We see from our measurements of the JavaScript
heap, however, that the implementations of the two
applications are very different, with google being
implemented as a series of visits to different pages,
and bing implemented as a single page visit. The
benefit of the bing approach is highlighted in this
case by looking at the right hand side of each sub-
figure. In the case of google, we see that the con-
tents of the JavaScript heap, including all the func-
tions, are discarded and recreated repeatedly during
our visit, whereas in the bing heap, the functions are
allocated only once. The heap size of the google
heap is significantly smaller than the bing heap (ap-

1Similar graphs for all the real web sites and benchmarks can
be found in our tech report [18].

proximately an order of magnitude), so it could be
argued that the google approach is better. On the
other hand, the bing approach does not lead to the
JavaScript heap being repeatedly recreated.

In conclusion, we note that this kind of dynamic
heap behavior is not captured by any of the V8 or
SunSpider benchmarks, even though it is common
among real web applications. Characterizations like
this motivate our study.

3 Experimental Design

In this section, we describe the benchmarks and ap-
plications we used and provide an overview of our
measurements.

Figure 2 lists the 11 real web applications that
we used for our study2. These sites were selected
because of their popularity according to Alexa.com,
and also because they represent a cross-section of di-
verse activities. Specifically, our applications repre-
sent search (google, bing), mapping (googlemap,
bingmap), email (hotmail, gmail), e-commerce
(amazon, ebay), news (cnn, economist), and so-
cial networking (facebook). Part of our goal was to
understand both the differences between the real sites
and the benchmarks as well as the differences among

2Throughout this discussion, we use the terms web applica-
tion and web site interchangeably. When we refer to the site,
we specifically mean the JavaScript executed when you visit the
site.

5

different classes of real web applications. For the re-
mainder of this paper, we will refer to the different
web sites using the names from Figure 2.

The workload for each site mimics the behavior of
a user on a short, but complete and representative,
visit to the site. This approach is dictated partly by
expedience — it would be logistically complicated
to measure long-term use of each web application —
and partly because we believe that many applications
are actually used in this way. For example, search
and mapping applications are often used for targeted
interactions.

3.1 Web Applications and Benchmarks

Site URL Actions performed
amazon amazon.com Search for the book “Quanti-

tative Computer Architecture,”
add to shopping cart, sign in,
and sign out

bing bing.com Type in the search query “New
York” and look at resulting im-
ages and news

bingmap maps.bing.com Search for directions from
Austin to Houston, search for
a location in Seattle, zoom-in,
and use the bird’s-eye view
feature

cnn cnn.com Read the front-page news and
three other news articles

ebay ebay.com Search for a notebook com-
puter, sign in, bid, and sign out

economist economist.com Read the front-page news, read
three other articles, view com-
ments

facebook facebook.com Log in, visit a friend’s page,
browser through photos and
comments

gmail mail.google.com Sign in, check inbox, delete a
mail item, sign out

google google.com Type in the search query “New
York” and look at resulting im-
ages and news

googlemap maps.google.com Search for directions from
Austin to Houston, search for
a location in Seattle, zoom-in,
and use the street view feature

hotmail hotmail.com Sign in, check inbox, delete a
mail item, sign out

Figure 2: Real web sites visited and actions taken.

In measuring the JavaScript benchmarks, we
chose to use the entire V8 benchmark suite, which
comprises 7 programs, and selected programs from
the SunSpider suite, which consists of 26 different

\ie\jscript*.cpp

Source-level
instrumentation

custom jscript.dll

custom trace files
website visits

Offline
analyzers 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Constant

Other Str Ops

Concat Op

measurement results
custom trace files

1

2

3

Figure 3: Instrumentation framework for measuring Java-
Script execution using Internet Explorer.

programs. In order to reduce the amount of data col-
lected and displayed, for SunSpider we chose the
longest running benchmark in each of the 9 dif-
ferent benchmark categories — 3d: raytrace, ac-
cess: nbody, bitops: nseive− bits, controlflow:
recursive, crypto: aes, date: xparb, math:
cordic, regexp: dna, and string: tagcloud.

3.2 Instrumenting Internet Explorer

Our approach to data collection is illustrated in Fig-
ure 3. The platform we chose for instrumentation is
Internet Explorer (IE), version 8, running on a 32-
bit Windows Vista operating system. While our re-
sults are in some ways specific to IE, the methods
described here can be applied to other browsers as
well.

Our measurement approach works as follows: we
have instrumented the C++ code that implements the
IE 8 JavaScript runtime. For IE, the code that is re-
sponsible for executing JavaScript programs is not
bundled in the main IE executable. Instead, it resides
in a dynamic linked library, jscript.dll. After per-
forming the instrumentation, we recompiled the en-
gine source code to create a custom jscript.dll.
(see Step 1 in Figure 3).

Next, we set up IE to use the instrumented
jscript.dll. We then visit the web sites and run
the benchmark programs described in the previous
section with our special version of IE. A set of bi-
nary trace files is created in the process of visit-
ing the web site or running a benchmark. These

6

traces typically comprise megabytes of data, often
up to 800 megabytes in the case of instruction traces.
Finally, we use offline analyzers to process these cus-
tom trace files to obtain the results presented here.

3.3 Behavior Measurements

In studying the behavior of JavaScript programs, we
focused on three broad areas: functions and code,
objects and data (omitted here), and events and han-
dlers. In each of these dimensions, we consider both
static measurements (e.g., number of unique func-
tions) and dynamic measurements (e.g., total num-
ber of function calls). Our goal is to measure the
logical behavior of JavaScript programs and to avoid
specific characteristics of the IE 8 implementation
as much as possible. Thus, whenever possible, we
consider aspects of the JavaScript source such as
functions, objects, and event handlers. As a result,
our measurements are mostly machine-independent.
However, because we measure aspects of IE’s Java-
Script engine, it is unavoidable that some particu-
lar characteristics are implementation-specific to that
engine (e.g., we count IE 8 bytecodes as a measure of
execution). Nevertheless, whenever it is possible to
untie such characteristics from the engine, we make
assumptions that we believe can be generalized to
other JavaScript engines as well.

3.3.1 Functions and Code

The JavaScript engine in IE 8 interprets JavaScript
source after compiling it to an intermediate represen-
tation called bytecode. The interpreter has a loop that
reads each bytecode instruction and implements its
effect in a virtual machine. Because no actual ma-
chine instructions are generated in IE 8, we cannot
measure the execution of JavaScript in terms of ma-
chine instructions. The bytecode instruction set im-
plemented by the IE 8 interpreter is a well-optimized,
traditional stack-oriented bytecode.

We count each bytecode execution as an “instruc-
tion” and use the term bytecode and instruction inter-
changeably throughout our evaluation. In our mea-
surements, we look at the code behavior at two lev-
els, the function and the bytecode level. Therefore,
we instrument the engine at the points when it creates
functions as well as in its main interpreter loop. Prior

work measuring architecture characteristics of inter-
preters also measures behavior in terms of bytecode
execution [19].

3.3.2 Events and Handlers

JavaScript has a single-threaded event-based pro-
gramming model, with each event being processed
by a non-preemptive handler. In other words, Java-
Script code runs in response to specific user-initiated
events such as a mouse click, becomes idle, and waits
for another event to process. Therefore, to com-
pletely understand behaviors of JavaScript that are
relevant to its predominant usage, we must consider
the event-driven programming model of JavaScript.
Generally speaking, the faster handlers complete, the
more responsive an application appears.

However, event handling is an aspect of program
behavior that is largely unexplored in related work
measuring C++ and Java execution (e.g., see [5] for
a thorough analysis of Java execution). Most related
work considers the behavior of benchmarks, such
as SPECjvm98 [4] and SPECcpu2000 [1], that have
no interactive component. For JavaScript, however,
such batch processing is mostly irrelevant.

For our measurements, we insert instrumentation
hooks before and after event handling routines to
measure characteristics such as the number of events
handled and the dynamic size of each event handler
invocation as measured by the number of executed
bytecode instructions.

3.4 Overview

Before drilling down into our results, we summarize
the main conclusions of our comparison in Figure 4.
The first column of the table indicates the specific be-
havior we measured and the next two columns com-
pare and contrast results for the real web applications
and benchmarks. The last column summarizes the
implications of the observed differences, specifically
providing insights for future JavaScript engine de-
signers. Due to space constraints, a detailed compar-
ison of all aspects of behavior is beyond the scope of
this paper and we refer the reader to our tech report
for those details [18].

7

Behavior Real applications Benchmarks Implications

CODE AND FUNCTIONS

Code size
100s of kilobytes to a few
megabytes

100s of bytes to 10s of kilo-
bytes

Efficient in-memory function and bytecode
representation

Number of func-
tions

1000s of functions 10s to 100s of functions Minimize per-function fixed costs

Number of hot
functions

10s to 100s of functions 10 functions or less Size hot function cache appropriately

Instruction mix Similar to each other
Different across bench-
marks and from real
applications

Optimize for real application instruction mix

Cold code Majority of code Minority of code Download, parse, and JIT code lazily

Function duration Mostly short
Mostly short, some very
long running

Loop optimizations less effective

EVENTS AND EVENT HANDLERS

Handler invoca-
tions

1000s of invocations Less than 10 invocations Optimize for frequent handler calls

Handler duration 10s to 100s of bytecodes Very long Make common short handler case fast

MEMORY ALLOCATION AND OBJECT LIFETIMES

Allocation rate Significant, sustained Only significant in a few
GC performance not a factor in benchmark
results

Data types
Functions and strings dom-
inate

Varies, JS objects dominate
in some

Optimize allocation of functions, strings

Object lifetimes
Depends on type, some
long-lived

Very long or very short
Approaches like generational collection hard
to evaluate with benchmarks

Heap reuse
Web 1.0 has significant
reuse between page loads

No heap reuse
Optimize code, heap for reuse case—cache
functions, DOM, possibly heap contents

Figure 4: A summary of lessons learned from JSMeter.

4 Evaluation

We begin this section with an overview of our results.
We then consider the behavior of the JavaScript func-
tions and code, including the size of functions, op-
codes executed, etc. Next, we investigate the use of
events and event handlers in the applications. We
conclude the section with a case study showing that
introducing cold code into existing benchmarks has
a substantial effect on performance results.

4.1 Overview

Before drilling down into our results, we summarize
the main conclusions of our comparison in Figure 4.
The first column of the table indicates the specific be-
havior we measured and the next two columns com-
pare and contrast results for the real web applications
and benchmarks. The last column summarizes the
implications of the observed differences, specifically

providing insights for future JavaScript engine de-
signers. Due to space constraints, a detailed compar-
ison of all aspects of behavior is beyond the scope of
this paper and we refer the reader to our tech report
for those details [18].

4.2 Functions and Code Behavior

We begin our discussion by looking at a summary
of the functions and behavior of the real applications
and benchmarks. Figure 5 summarizes our static and
dynamic measurements of JavaScript functions.

The real web sites. In Figure 5a, we see that the real
web applications comprise many functions, ranging
from a low of around 1,000 in google to a high
of 10,000 in gmail. The total amount of JavaScript
source code associated with these web sites is sig-
nificant, ranging from 200 kilobytes to more than
two megabytes of source. Most of the JavaScript

8

Static Dynamic

Unique Source Compiled Global Unique Total Opcodes / % Unique

Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.

amazon 1,833 692,173 312,056 210 808 158,953 9,941,596 62.54 44.08%

bing 2,605 1,115,623 657,118 50 876 23,759 1,226,116 51.61 33.63%

bingmap 4,258 1,776,336 1,053,174 93 1,826 274,446
12,560,049

45.77 42.88%

cnn 1,246 551,257 252,214 124 526 99,731 5,030,647 50.44 42.22%

ebay 2,799 1,103,079 595,424 210 1,337 189,805 7,530,843 39.68 47.77%

economist 2,025 899,345 423,087 184 1,040 116,562
21,488,257

184.35 51.36%

facebook 3,553 1,884,554 645,559 130 1,296 210,315
20,855,870

99.16 36.48%

gmail
10,193

2,396,062 2,018,450 129 3,660 420,839 9,763,506 23.20 35.91%

google 987 235,996 178,186 42 341 10,166 427,848 42.09 34.55%

googlemap 5,747 2,024,655 1,218,119 144 2,749 1,121,777
29,336,582

26.15 47.83%

hotmail 3,747 1,233,520 725,690 146 1,174 15,474 585,605 37.84 31.33%
(a) Real web application summary.

Static Dynamic

Unique Source Compiled Global Unique Total Opcodes / % Unique

Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.

richards 67 22,738 7,617 3 59 81,009 2,403,338 29.67 88.06%

deltablue 101 33,309 11,263 3 95 113,276 1,463,921 12.92 94.06%

crypto 163 55,339 31,304 3 91 103,451
90,395,272

873.80 55.83%

raytrace 90 37,278 15,014 3 72 214,983 5,745,822 26.73 80.00%

earley 416 203,933 65,693 3 112 813,683
25,285,901

31.08 26.92%

regexp 44 112,229 35,370 3 41 96 935,322 9742.94 93.18%

splay 47 17,167 5,874 3 45 678,417
25,597,696

37.73 95.74%

(b) V8 benchmark summary.

Static Dynamic

Unique Source Compiled Global Unique Total Opcodes / % Unique

Func. (bytes) (bytes) Context Func. Calls Opcodes Call Exec. Func.

3d-raytrace 31 14,614 7,419 2 30 56,631 5,954,264 105.14 96.77%

access-nbody 14 4,437 2,363 2 14 4,563 8,177,321 1,792.09 100.00%

bitops-nsieve 6 939 564 2 5 5
13,737,420 2,747,484.00

83.33%

controlflow 6 790 564 2 6 245,492 3,423,090 13.94 100.00%

crypto-aes 22 17,332 6,215 2 17 10,071 5,961,096 591.91 77.27%

date-xparb 24 12,914 5,341 4 12 36,040 1,266,736 35.15 50.00%

math-cordic 8 2,942 862 2 6 75,016
12,650,198

168.63 75.00%

regexp-dna 3 108,181 630 2 3 3 594 198.00 100.00%

string-tagcloud 16 321,894 55,219 3 10 63,874 2,133,324 33.40 62.50%
(c) SunSpider benchmark summary.

Figure 5: Summary measurements of web applications and benchmarks.

9

cnn

gmail
googlemap

access-nbody

richards

deltablue

crypto

raytrace
earley

regexp

splay

bitops-nsieve

controlflow

crypto-aes

date-xparb

math-cordic regexp-dna

string-

tagcloud

bingmap

bing
amazon

hotmail

SunSpider

aggregate

V8

aggregate

3d-raytrace
economist

facebook

ebay

google

Figure 6: Opcode frequency distribution comparison.

source code in these applications has been “mini-
fied”, that is, had the whitespace removed and lo-
cal variable names minimized using available tools
such as JScrunch [7] or JSmin [3]. This source code
is translated to the smaller bytecode representation,
which from the figure we see is roughly 60% the size
of the source.

Of this large number of functions, in the last col-
umn, we see that as many as 35–50% are not ex-
ecuted during our use of the applications, suggest-
ing that much of the code delivered applies to spe-
cific functionality that we did not exercise when we
visited the sites. Code-splitting approaches such as
Doloto [16] exploit this fact to reduce the wasted ef-
fort of downloading and compiling cold code.

The number of bytecodes executed during our
visits ranged from around 400,000 to over 20 mil-
lion. The most compute-intensive applications were
facebook, gmail, and economist. As we show
below, the large number of executed bytecodes in
economist is an anomaly caused by a hot func-
tion with a tight loop. This anomaly also is clearly
visible from the opcodes/call column. We see that
economist averages over 180 bytecodes per call,
while most of the other sites average between 25
and 65 bytecodes per call. This low number sug-
gests that a majority of JavaScript function execu-
tions in these programs do not execute long-running
loops. Our discussion of event handler behavior in
Section 4.6 expands on this observation.

Because it is an outlier, the economist applica-
tion deserves further comment. We looked at the

hottest function in the application and found a sin-
gle function which accounts for over 50% of the total
bytecodes executed in our visit to the web site. This
function loops over the elements of the DOM look-
ing for elements with a specific node type and plac-
ing those elements into an array. Given that the DOM
can be quite large, using an interpreted loop to gather
specific kinds of elements can be quite expensive to
compute. An alternative, more efficient implementa-
tion might use DOM APIs like getElementById to
find the specific elements of interest directly.

On a final note, in column five of Figure 5 we show
the number of instances of separate script elements
that appeared in the web pages that implemented the
applications. We see that in the real applications,
there are many such instances, ranging to over 200
in ebay. This high number indicates that JavaScript
code is coming from a number of sources in the ap-
plications, including different modules and/or fea-
ture teams from within the same site, and also com-
ing from third party sites, for advertising, analytics,
etc.

The benchmarks. In Figure 5, we also see the sum-
mary of the V8 and SunSpider benchmarks. We see
immediately that the benchmarks are much smaller,
in terms of both source code and compiled bytecode,
than the real applications. Furthermore, the largest
of the benchmarks, string− tagcloud, is large
not because of the amount of code, but because it
contains a large number of string constants. Of the
benchmarks, earley has the most real code and is an
outlier, with 400 functions compared to the average
of the rest, which is well below 100 functions. These
functions compile down to very compact bytecode,
often more than 10 times smaller than the real appli-
cations. Looking at the fraction of these functions
that are executed when the benchmarks are run, we
see that in many cases the percentage is high, ranging
from 55–100%. The benchmark earley is again an
outlier, with only 27% of the code actually executed
in the course of running the benchmark.

The opcodes per call measure also shows signif-
icant differences with the real applications. Some
of the SunSpider benchmarks, in particular, have
long-running loops, resulting in high average byte-
codes executed per call. Other benchmarks, such
as controlflow, have artificially low counts of op-

10

codes per call. Finally, none of the benchmarks has
a significant number of distinct contexts in which
JavaScript code is introduced (global scope), empha-
sizing the homogeneous nature of the code in each
benchmark.

4.3 Opcode Distribution

We examined the distribution of opcodes that each of
the real applications and benchmarks executed. To
do this, we counted how many times each of the 160
different opcodes was executed in each program and
normalized these values to fractions. We then com-
pared the 160-dimensional vector generated by each
real application and benchmark.

Our goal was to characterize the kinds of opera-
tions that these programs perform and determine how
representative the benchmarks are of the opcode mix
performed by the real applications. We were also in-
terested in understanding how much variation exists
between the individual real applications themselves,
given their diverse functionality.

To compare the resulting vectors, we used Prin-
cipal Component Analysis (PCA) [12] to reduce the
160-dimensional space to two principal dimensions.
Figure 6 shows the result of this analysis. In the fig-
ure, we see the three different program collections
(real, V8, and SunSpider) indicated in different col-
ors (blue, red, and green, respectively). The fig-
ure shows that the real sites cluster in the center of
the graph, showing relatively small variation among
themselves.

For example, ebay and bingmap, very different
in their functionality, cluster quite closely. In con-
trast, both sets of benchmarks are more widely dis-
tributed, with several obvious outliers. For SunSpi-
der, controlflow is clearly different from the other
applications, while in V8, regexp sits by itself. Sur-
prisingly, few of the benchmarks overlap the cluster
of real applications, with earley being the closest
in overall opcode mix to the real applications. While
we expect some variation in the behavior of a col-
lection of smaller programs, what is most surprising
is that almost all of the benchmarks have behaviors
that are significantly different than the real applica-
tions. Furthermore, it is also surprising that the real
web applications cluster as tightly as they do. This
result suggests that while the external functionality

provided may appear quite different from site to site,
much of the work being done in JavaScript on these
sites is quite similar.

4.4 Hot Function Distribution

We next consider the distribution of hot functions in
the applications, which tells us what code needs to be
highly optimized. Figure 7 shows the distribution of
hot functions in a subset of the real applications and
the V8 benchmarks (full results, including the Sun-
Spider benchmarks are included in [18]). Each figure
shows the cumulative contribution of each function,
sorted by hottest functions first on the x-axis, to nor-
malized total opcodes executed on the y-axis. We
truncate the x-axis (not considering all functions) to
get a better view of the left end of the curve. The
figures show that all programs, both real applications
and benchmarks, exhibit high code locality, with a
small number of functions accounting for a large ma-
jority of total execution. In the real applications, 80%
of total execution is covered by 50 to 150 functions,
while in the benchmarks, at most 10 functions are re-
quired. facebook is an outlier among the real appli-
cations, with a small number of functions accounting
for almost all the execution time.

4.5 Implications of Code Measurements

We have considered static and dynamic measures of
JavaScript program execution, and discovered nu-
merous important differences between the behaviors
of the real applications and the benchmarks. Here
we discuss how these differences might lead design-
ers astray when building JavaScript engines that op-
timize benchmark performance.

First, we note a significant difference in the code
size of the benchmarks and real applications. Real
web applications have large code bases, containing
thousands of functions from hundreds of individual
script elements. Much of this code is never or rarely
executed, meaning that efforts to compile, optimize,
or tune this code are unnecessary and can be ex-
pensive relative to what the benchmarks would in-
dicate. We also observe that a substantial fraction of
the downloaded code is not executed in a typical in-
teraction with a real application. Attempts to avoid
downloading this code, or minimizing the resources

11

0 100 200 300 400 500 600 700
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of functions

E
xe

cu
tio

n
co

ve
ra

ge

gmail
googlemap
hotmail
bingmap
facebook

(a) Real web application hot function distribution.

0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of functions

E
xe

cu
tio

n
co

ve
ra

ge

richards
deltablue
crypto
raytrace
earley
regexp
splay

(b) V8 benchmarks hot function distribution.

Figure 7: Hot function distribution.

that it consumes once it is downloaded, will show
much greater benefits in the real applications than in
the benchmarks.

Second, we observe that based on the distribu-
tion of opcodes executed, benchmark programs rep-
resent a much broader and skewed spectrum of be-
havior than the real applications, which are quite
closely clustered. Tuning a JavaScript engine to
run controlflow or regexp may improve bench-
mark results, but tuning the engine to run any one
of the real applications is also likely to significantly
help the other real applications as well. Surprisingly,
few of the benchmarks approximate the instruction
stream mix of the real applications, suggesting that
there are activities being performed in the real appli-

cations that are not well emulated by the benchmark
code.

Third, we observe that each individual func-
tion execution in the real applications is relatively
short. Because these applications are not compute-
intensive, benchmarks with high loop counts, such as
bitops− nsieve, distort the benefit that loop opti-
mizations will provide in real applications. Because
the benchmarks are batch-oriented to facilitate data
collection, they fail to match a fundamental charac-
teristic of all real web applications — the need for
responsiveness. The very nature of an interactive ap-
plication prevents developers from writing code that
executes for long periods of time without interrup-
tion.

Finally, we observe that a tiny fraction of the code
accounts for a large fraction total execution in both
the benchmarks and the real applications. The size
of the hot code differs by one to two orders of mag-
nitude between the benchmarks and applications, but
even in the real applications the hot code is still quite
compact.

4.6 Event Behavior

In this section, we consider the event-handling be-
havior of the JavaScript programs. We observe that
handling events is commonplace in the real appli-
cations and almost never occurs in the benchmarks.
Thus the focus of this section is on characterizing the
handler behavior of the real applications.

Before discussing the results, it is important to ex-
plain how handlers affect JavaScript execution. In
some cases, handlers are attached to events that oc-
cur when a user interacts with a web page. Handlers
can be attached to any element of the DOM, and in-
teractions such as clicking on an element, moving
the mouse over an element, etc., can cause handlers
to be invoked. Handlers also are executed when a
timer timeouts, when a page loads, or called when an
asynchronous XMLHttpRequest is completed. Java-
Script code is also executed outside of a handler con-
text, such as when a SCRIPT block is processed as
part of parsing the web page. Often code that initial-
izes the JavaScript for the page executes outside of a
handler.

Because JavaScript has a non-preemptive execu-
tion model, once a JavaScript handler is started, the

12

of unique executed instructions

events events handler total

richards 8 6 2,403,333 2,403,338

deltablue 8 6 1,463,916 1,463,921

crypto 11 6 86,854,336 86,854,341

raytrace 8 6 5,745,817 5,745,822

earley 11 6 25,285,896 25,285,901

regexp 8 6 935,317 935,322

splay 8 6 25,597,691 25,597,696

Figure 9: Event handler characteristics in the V8 bench-
marks.

rest of the browser thread for that particular web page
is stalled until it completes. A handler that takes a
significant amount of time to execute will make the
web application appear sluggish and non-responsive.

Figures 8 and 9 present measures of the event han-
dling behavior in the real applications and the V8
benchmarks3. We see that the real applications typ-
ically handle thousands of events while the bench-
marks all handle 11 or fewer. Furthermore, we see
that a substantial fraction of all bytecodes executed
by the real applications occur in handler functions.
Even though real web sites typically process thou-
sands of events, the unique events column in the
figure indicates that there are only around one hun-
dred unique events per application. This means that
a given event is likely to be repeated and handled
many times throughout the course of a user visit to
the site. When an incoming event is received, we log
the name of the event as well as the JavaScript func-
tions invoked and the number of bytecode instruc-
tions executed to handle the event. The two events
are unique when they have the same associated name
and the same handler is employed to process it, i.e.,
the same set of functions invoked with the same num-
ber of instructions

We see the diversity of the collection of handlers
in the results comparing the mean, median, and max-
imum of handler durations for the real applications.
Some handlers run for a long time, such as in cnn,
where a single handler accounts for a significant frac-
tion of the total JavaScript activity. Many handlers
execute for a very short time, however. The median

3SunSpider results are similar to V8 results, so we omit them
here.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

Number of events (normalized)

S
iz

e
of

 h
an

dl
er

s
(#

 o
f e

xe
cu

te
d

in
st

ru
ct

io
ns

)

amazon
bing
bingmap
cnn
ebay
economist
facebook
google
googlemap
gmail
hotmail

Figure 10: Distribution of handler durations.

handler duration in amazon, for example, is only 8
bytecodes. amazon is also unusual in that it has the
highest number of events. We hypothesize that such
short-duration handlers probably are invoked, test a
single value, and then return.

These results demonstrate that handlers are writ-
ten so that they almost always complete in a short
time. For example, in bing and google, both highly
optimized for delivering search results quickly, we
see low average and median handler times. It is also
clear that google, bing, and facebook have taken
care to reduce the duration of the longest handler,
with the maximum of all three below 100,000 byte-
codes.

Figure 10 illustrates the distribution of handler du-
rations for each of the applications. The x-axis de-
picts the instances of handler invocations, sorted by
smallest first and normalized to one. The y-axis de-
picts the number of bytecodes executed by each han-
dler invocation. For example, in the figure, approx-
imate 40% of the handlers in googlemap executed
for 1000 bytecodes or less.

Figure 10 confirms that most handler invocations
are short. This figure provides additional context to
understand the distribution. For example, we can de-
termine the 95th percentile handler duration by draw-
ing a vertical line at 0.95 and seeing where each line
crosses it. The figure also illustrates that the dura-
tions in many of the applications reach plateaus, indi-
cating that there are many instances of handlers that
execute for the same number of instructions. For ex-

13

of unique executed instructions % of handler handler size

events events handler total instructions average median maximum

amazon 6,424 224 7,237,073 9,941,596 72.80% 1,127 8 1,041,744

bing 4,370 103 598,350 1,226,116 48.80% 137 24 68,780

bingmap 4,669 138 8,274,169 12,560,049 65.88% 1,772 314 281,887

cnn 1,614 133 4,939,776 5,030,647 98.19% 3,061 11 4,208,115

ebay 2,729 136 7,463,521 7,530,843 99.11% 2,735 80 879,798

economist 2,338 179 21,146,767 21,488,257 98.41% 9,045 30 270,616

facebook 5,440 143 17,527,035 20,855,870 84.04% 3,222 380 89,785

gmail 1,520 98 3,085,482 9,763,506 31.60% 2,030 506 594,437

google 569 64 143,039 427,848 33.43% 251 43 10,025

googlemap 3,658 74 26,848,187 29,336,582 91.52% 7,340 2,137 1,074,568

hotmail 552 194 474,693 585,605 81.06% 860 26 202,105

Figure 8: Event handler characteristics in real applications.

ample, we see a significant number of bingmap in-
stances that take 1,500 bytcodes to complete.

4.7 Cold Code Case Study

Our results show that real web applications have
much more JavaScript code than the SunSpider and
V8 benchmarks and that most of that code is cold.
We were curious how much impact the presence of
such cold code would have on benchmark perfor-
mance results. We formed a hypothesis that simply
increasing the amount of cold code in existing bench-
marks would have a significant non-uniform impact
on benchmark results. If this hypothesis is true, then
a simple way to make results from current bench-
marks more representative of actual web applications
would be to add cold code to each of them.

To test this hypothesis, we selected six SunSpider
benchmarks that are small and have mostly hot code.
To each of these benchmarks, we added 200 kilo-
bytes, 400 kilobytes, 800 kilobytes, 1 megabyte and
2 megabytes of cold code from the jQuery library.
The added code is never called in the benchmark but
the JavaScript runtime still processes it. We executed
each benchmark with the added code and recorded its
performance on both the Google Chrome and Inter-
net Explorer browsers4.

Figure 11 presents the results of the experiment.

4We use Chrome version 3.0.195.38, Internet Explorer ver-
sion 8.0.6001.18865, and collected measurements on a machine
with a 1.2 GHz Intel Core Duo processor with 1.5 gigabytes of
RAM, running 32-bit Windows Vista operating system.

It shows the execution overhead observed in each
browser as a function of the size of the additional
cold code added in each benchmark. At a high
level, we see immediately that the addition of cold
code affects the benchmark performance on the two
browsers differently. In the case of Chrome (Fig-
ure 11a), adding two megabytes of cold code can
add up to 450% overhead to the benchmark perfor-
mance. In Internet Explorer (Figure 11b), cold code
has much less impact.

In IE, the addition of 200 to 400 kilobytes does not
impact its performance significantly. On average, we
observe the overhead due to cold code of 1.8% and
3.2%, respectively. With 1 megabyte of cold code,
the overhead is around 13%, still relatively small
given the large amount of code being processed. In
Chrome, on the other hand, even at 200 kilobytes, we
observe quite a significant overhead, 25% on average
across the six benchmarks. Even between the bench-
marks on the same browser, the addition of cold code
has widely varying effects (consider the effect of 1
megabyte of cold code on the different benchmarks
in Chrome).

There are several reasons for these observed dif-
ferences. First, because Chrome executes the bench-
marks faster than IE, the additional fixed time
processing the cold code will have a greater effect
on Chrome’s overall runtime. Second, Chrome and
IE process JavaScript source differently, and large
amounts of additional source, even if it is cold code,
will have different effects on runtime. The impor-

14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 o

ve
rh

e
ad

200K

400K

800K

1M

2M

2
9
0
%

2
9
4
%

4
3
3
%

1
0
4
%

2
0
4
%

1
6
3
%

2
0
0
%

3
7
9
%

2
7
8
%

3
1
4
%

4
5
7
%

1
2
7
%

1
4
4
%

2
8
8
%

(a) Impact of cold code in Chrome.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 o

ve
rh

e
ad

200K

400K

800K

1M

2M

(b) Impact of cold code Internet Explorer 8.

Figure 11: Impact of cold code using a subset of the SunSpider benchmarks.

tant takeaway here is not that one browser processes
cold code any better than another, but that results of
benchmarks containing 1 megabyte of cold code will
look different than results without the cold code. Fur-
thermore, results with cold code are likely to be more
representative of browser performance on real web
sites.

5 Related Work

There have been many efforts to measure the behav-
ior of programs written in type safe languages over
the years, most recently focused on Java.

5.1 JavaScript and Dynamic Languages

There are surprisingly few papers measuring specific
aspects of JavaScript behavior, despite how widely
used it is in practice. A very recent paper by Le-
bresneet al. measures aspects of the use of dynamic
aspects of JavaScript programs in actual use [15].

While their goals are very different from ours (their
purpose is to develop a type system for JavaScript),
some of their conclusions are similar. Specifically,
they look closely at how objects use the prototype
chain in real applications. Like us, they consider V8
benchmarks as well as real web sites and find differ-
ences between the benchmarks and real sites. Un-
like us, they do not provide a comprehensive analy-
sis of JavaScript behavior along the axes we consider
(code, data, and events).

One closely related paper focuses on the behav-
ior of interpreted languages. Romer et al. [19] con-
sider the runtime behavior of several interpreted lan-
guages, including Tcl, Perl, and Java, and show that
architectural characteristics, such as cache locality, is
a function of the interpret itself and not the program
that it is interpreting. While the goals are similar, our
methods, and the language we consider (JavaScript),
is very different.

15

5.2 Java

Dieckmann and Holzle consider the memory alloca-
tion behavior of the SPECJVM Java benchmarks [4].
A number of papers have examined the memory ref-
erence characteristics of Java programs [4, 14, 17, 20,
21] specifically to understand how hardware tailored
for Java execution might improve performance. Our
work differs from this previous work in that we mea-
sure JavaScript and not Java, we look at characteris-
tics beyond memory allocation, and we consider dif-
ferences between benchmarks and real applications.

Doufour et al. present a framework for categoriz-
ing the runtime behavior of programs using precise
and concise metrics [5]. They classify behavior in
terms of five general categories of measurement and
report measurements of a number of Java applica-
tions and benchmarks, using their result to classify
the programs into more precise categories. Our mea-
surements correspond to some of the metrics men-
tioned by Doufour et al., and we consider some di-
mensions of execution that they do not, such as event
handler metrics, and compare benchmark behavior
with real application behavior.

6 Conclusions

We have presented detailed measurements of the be-
havior of JavaScript applications, including commer-
cially important web applications such as Gmail and
Facebook, as well as the SunSpider and V8 bench-
mark suites. We measure two specific areas of
JavaScript runtime behavior: 1) functions and code
and 2) events and handlers. We find that the bench-
marks are not representative of many real web sites
and that conclusions reached from measuring the
benchmarks may be misleading.

Our results show that JavaScript web applications
are large, complex, and highly interactive programs.
While the functionality they implement varies sig-
nificantly, we observe that the real applications have
much in common with each other as well. In con-
trast, the JavaScript benchmarks are small, and be-
have in ways that are significantly different than the
real applications. We have documented numerous
differences in behavior, and we conclude from these
measured differences that results based on the bench-
marks may mislead JavaScript engine implementers.

Furthermore, we observe interesting behaviors in
real JavaScript applications that the benchmarks fail
to exhibit. Our measurements suggest a number
of valuable follow-up efforts. These include work-
ing on building a more representative collection of
benchmarks, modifying JavaScript engines to more
effectively implement some of the real behaviors we
observed, and building developer tools that expose
the kind of measurement data we report.

References

[1] B. Calder, D. Grunwald, and B. Zorn. Quantifying behavioral dif-
ferences between C and C++ programs. Journal of Programming
Languages, 2:313–351, 1995.

[2] W. W. W. Consortium. Document object model (DOM). http:

//www.w3.org/DOM/.
[3] D. Crockford. JSMin: The JavaScript minifier. http://www.

crockford.com/javascript/jsmin.html.
[4] S. Dieckmann and U. Hölzle. A study of the allocation behaviour

of the SPECjvm98 Java benchmarks. In Proceedings of European
Conference on Object Oriented Programming, pages 92–115, July
1999.

[5] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic
metrics for Java. SIGPLAN Not., 38(11):149–168, 2003.

[6] ECMA International. ECMAScript language specification. Stan-
dard ECMA-262, Dec. 1999.

[7] C. Foster. JSCrunch: JavaScript cruncher. http://www.

cfoster.net/jscrunch/.
[8] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.

Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang,
and M. Franz. Trace-based just-in-time type specialization for
dynamic languages. In Proceedings of the Conference on Pro-
gramming Language Design and Implementation, pages 465–478,
2009.

[9] Google. V8 JavaScript engine. http://code.google.com/

apis/v8/design.html.
[10] Google. V8 benchmark suite - version 5. http://v8.

googlecode.com/svn/data/benchmarks/v5/run.html,
2009.

[11] A. T. Holdener, III. Ajax: The Definitive Guide. O’Reilly, 2008.
[12] I. T. Jolliffe. Principal Component Analysis. Series in Statistics.

Springer Verlag, 2002.
[13] G. Keizer. Chrome buries Windows rivals in browser drag race.

http://www.computerworld.com/s/article/9138331/

Chrome buries Windows rivals in browser drag race,
2009.

[14] J.-S. Kim and Y. Hsu. Memory system behavior of Java programs:
methodology and analysis. In Proceedings of the International
Conference on Measurement and Modeling of Computer Systems,
pages 264–274, 2000.

[15] S. Lebresne, G. Richards, J. Östlund, T. Wrigstad, and J. Vitek.
Understanding the dynamics of JavaScript. In Proceedings for the
Workshop on Script to Program Evolution, pages 30–33, 2009.

[16] B. Livshits and E. Kiciman. Doloto: code splitting for network-
bound Web 2.0 applications. In Proceedings of the International
Symposium on Foundations of Software Engineering, pages 350–
360, 2008.

[17] R. Radhakrishnan, N. Vijaykrishnan, L. K. John, A. Sivasubrama-
niam, J. Rubio, and J. Sabarinathan. Java runtime systems: Char-
acterization and architectural implications. IEEE Trans. Comput-
ers, 50(2):131–146, 2001.

16

[18] P. Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn. JSMe-
ter: Characterizing real-world behavior of JavaScript programs.
Technical Report MSR-TR-2009-173, Microsoft Research, Dec.
2009.

[19] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong,
J.-L. Baer, B. N. Bershad, and H. M. Levy. The structure and
performance of interpreters. In Proceedings of the International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 150–159, Oct. 1996.

[20] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh. Characterizing
the memory behavior of Java workloads: a structured view and op-
portunities for optimizations. In Proceedings of the International
Conference on Measurement and Modeling of Computer Systems,
pages 194–205, 2001.

[21] T. Systä. Understanding the behavior of Java programs. In
Proceedings of the Working Conference on Reverse Engineering,
pages 214–223, 2000.

[22] D. Unger and R. B. Smith. Self: The power of simplicity. In
Proceedings of the Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 227–242, Dec. 1987.

[23] WebKit. Sunspider JavaScript benchmark, 2008. http://www2.
webkit.org/perf/sunspider-0.9/sunspider.html, 2008.

[24] Wikipedia. Browser wars. http://en.wikipedia.org/wiki/
Browser wars, 2009.

17

